Cutting edge Seminar
Speaker: Hirohito Yamazaki (Nagaoka University of Technology)
Title: Development of semiconductor based nanopore technologies for biosensing and DNA sequencing
※This seminar can also be attended through ZOOM. Please check the URL on “HIGO Cutting-Edge Seminar” at Moodle.
https://md.kumamoto-u.ac.jp/course/view.php?id=114380
Abstract:
Recent advancements in biotechnology have been remarkable in both the research and healthcare fields. These game-changing innovations have paved the way for breakthroughs in understanding complex biological systems, enabling personalized medicine, and accelerating drug discovery and development. Among these technologies, nanopore sequencer by oxford nanopore technologies become attractive technology because it offers portable long sequencing solution. This innovative approach employs protein nanopores embedded in a lipid membrane, where DNA strands are passed through, producing characteristic electrical signals that are decoded into nucleotide sequences. As a later development of protein nanopores, semiconductor based nanopore technologies emerged as a core-technology of next generation biosensor and DNA/RNA sequencing. In this talk, I will present the development history, basic and applications of nanopore technologies to provide a comprehensive understanding of nanopore technologies. This talk will consist of two parts: First part is developmental history of DNA sequencers by Oxford Nanopore technologies and beyond and second part is the overview of semiconductor based nanopore technologies including nanopore fabrication technology in semiconductor materials, detection of DNA, RNA, and protein, and my research works.
Reference:
- Yamazaki, H.; Peng, Z.; Kawano, R.; Shoji, K., The potential of nanopore technologies toward empowering biophysical research: Brief history, basic principle and applications. Biophysics and Physicobiology 2024, 21 (1).
- Tripathi, P.; Benabbas, A.; Mehrafrooz, B.; Yamazaki, H.; Aksimentiev, A.; Champion, P. M.; Wanunu, M., Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proceedings of the National Academy of Sciences 2021, 118 (17).
- Xue, L.#; Yamazaki, H.#; Ren, R.; Wanunu, M.; Ivanov, A.; Edel, J. Solid-state nanopore sensors. Nature Review Materials 2020, 5, 931-951 #Co-first author
- Tripathi, P.; Shuai, L.; Joshi, H.; Yamazaki, H.; Fowle, W. H.; Aksimentiev, A.; Fenniri, H.; Wanunu, M., Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors. Journal of the American Chemical Society 2020, 142 (4), 1680-1685.
- Garoli, D.; Yamazaki, H.; Maccaferri, N.; Wanunu, M. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano letters 2019, 19 (11), 7553-7562.
- Yamazaki, H.; Mizuguchi, T.; Esashika, K.; Toshiharu, S. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 2019, 144, 5381-5388.
- Yamazaki, H.; Hu, R.; Zhao, Q.; Wanunu, M., Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. ACS nano 2018, 12 (12), 12472-12481.
- Hu, R.; Rodrigues, J. V.; Waduge, P.; Yamazaki, H.; Cressiot, B.; Chishti, Y.; Makowski, L.; Yu, D.; Shakhnovich, E.; Zhao, Q.; Wanunu, M., Differential Enzyme Flexibility Probed Using Solid-State Nanopores. ACS nano 2018, 12 (5), 4494-4502.
- Yamazaki, H.; Hu, R.; Henley, R. Y.; Halman, J.; Afonin, K. A.; Yu, D.; Zhao, Q.; Wanunu, M., Label-Free Single-Molecule Thermoscopy Using a Laser-Heated Nanopore. Nano letters 2017, 17 (11), 7067-7074.
- Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M., Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. ACS nano 2017, 11 (6), 5706-5716.